Generalized Low Rank Approximations of Matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Generalized Low Rank Approximations of Matrices

In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM...

متن کامل

Generalized Low-Rank Approximations

We study the frequent problem of approximating a target matrix with a matrix of lower rank. We provide a simple and efficient (EM) algorithm for solving weighted low rank approximation problems, which, unlike simple matrix factorization problems, do not admit a closed form solution in general. We analyze, in addition, the nature of locally optimal solutions that arise in this context, demonstra...

متن کامل

Fast low rank approximations of matrices and tensors

In many applications such as data compression, imaging or genomic data analysis, it is important to approximate a given m × n matrix A by a matrix B of rank at most k which is much smaller than m and n. The best rank k approximation can be determined via the singular value decomposition which, however, has prohibitively high computational complexity and storage requirements for very large m and...

متن کامل

Ela Fast Low Rank Approximations of Matrices and Tensors

In many applications such as data compression, imaging or genomic data analysis, it is important to approximate a given m × n matrix A by a matrix B of rank at most k which is much smaller than m and n. The best rank k approximation can be determined via the singular value decomposition which, however, has prohibitively high computational complexity and storage requirements for very large m and...

متن کامل

Generalized Rank-Constrained Matrix Approximations

In this paper we give an explicit solution to the rank constrained matrix approximation in Frobenius norm, which is a generalization of the classical approximation of an m× n matrix A by a matrix of rank k at most. 2000 Mathematics Subject Classification: 15A18.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2005

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-005-3561-6